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Abstract

T wo-dimensional plots representing the changes in charge
and bond-order distributions induced by the optical field
are used to investigate the size-scaling of polarizabilities of
donor/acceptor substituted elongated polyenes. T he second
order polarizability (β ) is shown to originate from localized
regions at the donor/acceptor ends and therefore saturates to
a constant value, independent on polyene size n, for large n.
In contrast, the linear (α) and cubic (γ) polarizabilities have
contributions from the entire chain and grow linearly with n.
T hese real-space plots reveal directly the relevant electronic
coherence sizes that control the optical response and should
be most valuable in the design of new optical materials.

I. INTRODUCTION

T he connection between electronic structure and op-
tical properties of organic compounds is an important
fundamental problem [1] with numerous technological
implications on optical materials and electroluminescent
devices [2–4]. Polyenic oligomers are of particular in-
terest as model systems of one-dimensional conjugated
chromophores [5]. T hese molecules possess large opti-
cal polarizabilities due to delocalized π -electron excita-
tions [4,6–8]. Adding an electron-withdrawing and an
electron-donating group enhances the optical response
even further [7,9–15]. T he mechanisms leading to dra-
matic changes in optical polarizabilities with increasing
chain length and donor/acceptor strength and the limit-
ing factors of these enhancements are still not fully un-
derstood. Exploring the interplay between these two fac-
tors is a key for a rational design strategy of molecules

possessing large optical polarizabilities [2]. Experimen-
tal investigations are complicated by sample-quality, con-
trolled synthesis and poor solubility of large molecules.
On the theoretical side, different approaches are used for
small molecules and bulk materials, making it hard to
investigate the intermediate crossover regime.

T he variation of off-resonant optical polarizabilities
with molecular size may be described by the scaling law
∼ n b , n being the number of repeat units. In odd order
responses (α, γ) the scaling exponents b vary consider-
ably for short molecules: 1 < bα < 2 and 2 < bγ < 8
depending on the system and model [6,16–19]. For elon-
gated chains we expect the polarizability per repeat-unit
α/n and γ/n to saturate and become size independent;
T he exponents b should thus attain the value 1, indicat-
ing that the polarizabilities become extensive properties.
T he saturation of γ/n was first predicted by Flytzanis
and co-workers [18]. Recent theoretical studies indicate
that it sets in at about 30-50 repeat units. A saturation
length of ∼ 200 was observed experimentally in one case
[20].

Donor/acceptor substituted molecules possess even-
order nonlinear polarizabilities. A comprehensive review
of the current status of second order polarizability studies
was given in [7]. Optical polarizabilities can be calculated
using a perturbative expansion involving a summation
over all molecular states. By restricting the summation
to a single excited state and assuming that the charge-
transfer transition is unidirectional, we obtain the two-
level expression commonly used to estimate the second
order polarizability

β ∝ (µee − µgg)
µ 2

ge

E 2
ge

, (1.1)

where µgg and µee are the ground and excited state dipole
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moments, µge is the transition dipole, and Ege is the
transition frequency. It is not clear from Eq. (1.1) how
should β scale with molecular size. Existing experimental
and theoretical studies have not established the precise
scaling law of β and its the crossover to the bulk. Ex-
perimental studies restricted by synthetic considerations
to chain length of 11 repeat units show 1.4 < bβ < 3.2
[7,9–12] whereas calculations performed with up to 22
repeat units yield 1.5 < bβ < 2 [7,21]. Semiempirical
calculations made by Morley suggest that for polyenes
bβ = 1 [13,14] whereas for polyarenes bβ = 0 [15]. Using
(β/molecular volume) as the figure of merit of differ-
ent materials, he predicted that the optimal values in
polyenic and polyarenic chromophores should be about
20 and 3 repeat units respectively [13–15].

In this paper we use a newly-developed Collective Elec-
tronic Oscillator (CEO) technique [22–24] which makes
it possible to explore the variation of β over a broad size
range, all the way to the bulk. Our calculations show that
in marked contrast to α and γ, β itself (and not β/n) sat-
urates for large sizes. We propose a real-space theoretical
analysis that can readily account for this behavior, pin-
point the origin of β, and provide useful guideness for
the synthesis of molecules with desirable nonlinear opti-
cal properties. Although the calculations presented here
are for polyene bridges, this approach can be readily ap-
plied to a broad range of optical materials.

II. REAL-SPACE TWO-DIMENSIONAL

ANALYSIS OF SUBSTITUTION EFFECTS

T he present picture is based on the reduced single elec-
tron density matrix [25] which connects the optical polar-
izabilities directly to motions of charges in the molecule
and totally avoids the calculation of excited electronic
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FIG. 1. Structures of the neutral N(n), Donor D(n),
Acceptor A(n), and Donor/Acceptor DA(n) substituted
molecules. Calculations were performed for bridges with
n =5,10,15,20,30,40 double bonds.

eigenstates [22,23]. T he density matrix offers an effi-
cient computational scheme and provides a highly intu-
itive real-space physical picture for the optical response.

We consider a simplest model of a conjugated molecule
where a single π orbital is located on each atom (i). T he
reduced single electron density matrix is defined as

ρij(t) ≡ 〈Ψ(t)|c+
i cj |Ψ(t)〉, (2.1)

where |Ψ(t)〉 is the many-electronic wavefunction of the
molecule driven by the external field and c+

i (ci) are cre-
ation (annihilation) operators of an electron at the i’th
atomic orbital. T he diagonal elements ρii represent the
electronic π charge density at the i’th atom, whereas the
off-diagonal elements, i 6= j, denote the bonding strength
(i.e. bond order) between the two atoms [26–28]. T he co-
herence size associated with the off-diagonal density ma-
trix elements measures the degree of coherence between
electrons at different sites, and controls, therefore, the
scaling of molecular properties with size. T he present co-
herence size is purely electronic in origin and reflects the
loss of information when the many-electron density ma-
trix is traced over all but one electrons. Nuclear motion
and relaxation which are not included into the present
calculations will contribute additional dephasing relax-
ation and will reduce the coherence size even further.

We calculated the optimal ground-state geometries of
the donor/acceptor substituted polyenes shown in Fig. 1
at the AM1 level using Gaussian-94 1. T he ZINDO
code was then used to generate the INDO/S hamiltonian
[29–31] and calculate Hartree-Fock ground-state density
matrices ρ̄ij .

T he effect of donor/acceptor substitutions on the
chemical bonding pattern and charge distributions in the
ground state can be visualized using contour plots of the
density matrices in real-space [22,23]. Absolute values of
the reduced single-electron ground-state density matri-
ces elements |ρ̄ij | of donor/acceptor substituted molecule
DA(15) (n=15 is the number of double bonds) are shown
in Fig. 2A. T he axes represent carbon atoms of the bridge
labeled 1-30 (In Figures 2 and 3 the donor end is labeled 1
and the acceptor end is 2n). T he density matrix is dom-
inated by the diagonal and near-diagonal elements, re-
flecting the bonds between nearest neighbor atoms. T he
double bonds are clearly identified. T o show the effect
of substitution on the ground state we consider the dif-
ference matrix ∆ρ̄ ≡ |ρ̄DA − ρ̄N | between the density
matrices of the substituted (ρ̄DA) and neutral (unsub-
stituted) (ρ̄N ) molecules for various molecular sizes (see
Fig. 1). T he difference matrices for molecules with n=9,
15 and 30 are displayed in Fig. 3 A, B, and C respec-
tively. T hese plots only show the polyenic bridge; T he
donor and the acceptor regions has been removed. For

1 During geometry optimization in long molecules, the geom-
etry of the polyenic chain was constrained to be planar.
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FIG. 2. Contour plots of the ground state density matrix ρ̄ (A), and the density matrices induced by a static electric field
δρ(1 ) (B), δρ(2) (C), and δρ(3) (D) of molecule DA(15). T he part of the density matrix corresponding to the bridge is marked
by a rectangle. T he axes are labeled by the bridge carbon atoms. Atom 1 (30) correspond to the donor (acceptor) ends.

clarity we magnified ∆ρ as indicated in each panel and
used the same color code. T he plots show that for large
sizes (n=30 and 15) the donor and acceptor do not com-
municate directly and their effects are well confined to
their respective vicinities; Consequently, the donor and
the acceptor contributions to the dipole become addi-
tive. T his is clearly illustrated in the top panel in Fig. 4
which shows that the ground-state dipole moment µgg

of the donor/acceptor molecule is equal to the sum of
dipole moments of molecules with donor only (D) and
with acceptor only (A) substitutions. For shorter chains
(e.g. n = 9 Fig. 3A) ∆ρ̄ is finite all across the chain,
indicating a weak coupling of the donor and acceptor.
T he leveling off the ground-state dipole moments µgg of
the donor/accceptor molecules with increasing of chain
length (Fig. 4A) reflects the absence of long range elec-
tronic coherence in large polyenes and is crucial for pre-
dicting the scaling of optical properties with size, as will
be shown below.

III. SIZE-SCALING OF OPTICAL

POLARIZABILITIES

When the molecule is driven by an external field, its
density matrix acquires a time-dependent part ρ(t) =
ρ̄ + δρ(t). In the frequency domain we have [22,23]

δρij(ω) = δρ
(1)
ij (ω) + δρ

(2 )
ij (ω) + δρ

(3)
ij (ω) + · · · . (3.1)

where δρ
(k)
ij (ω), the k’th order contribution in the in-

coming optical field, may be calculated by solving the
time-dependent Hartree Fock(T DHF) equation of mo-
tion using the ground state density matrices as an in-
put [22,23]. T he k’th order polarizability is calculated
by taking the expectation value of the dipole operator
with respect to δρ(k)(ω). α, β, and γ are then calculated
using δρ(1), δρ(2 ), and δρ(3) induced by a static external
field.

T he resulting size-scaling of the off-resonant polariz-
abilities α/n, β and γ/n is depicted in Fig. 4, and the
scaling exponents bα, bβ and bγ are displayed in Fig. 5.
T he behavior of bα and bγ which reach the value 1 at
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FIG. 3. T op row: Contour plots of the ground state difference matrices ∆ρ̄ = ρ̄D A − ρ̄N for n=9 (A), n=15 (B), and n=30
(C) shown for the bridge part of the matrix. Axes are labelled by the bridge carbon atoms with atom 1 on the donor side and
atom 2n on the acceptor side. T he second, the third, and the forth rows display the difference matrices to various orders in
the field ∆ρ(1 ), ∆ρ(2), and ∆ρ(3) respectively.
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large sizes is consistent with the thermodynamic (bulk)
limit. bβ, however is very different and vanishes at large
sizes.

T o visualize the optical response in real-space and an-
alyze this markedly different behavior of β we examine
the induced density matrices δρ(k) = δρ(k)(ω = 0) con-
tributing to the optical response. In Fig. 2 we display the
induced density matrix to first δρ(1) (B), second δρ(2 ) (C)
and third δρ(3) (D) order in the external field. Shown are
the absolute magnitudes of these density matrices in the
site representation, using the same format of the ground
state calculations (Fig. 2A). T hese plots relate the opti-
cal properties directly to motions of charges in the sys-
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FIG. 4. Scaling with size and saturation of the ground state

dipole moment µgg (A), the first (B), second (C), and third
(D) orders off-resonant polarizabilities of the molecules dis-
played in Fig. 1. Neutral (no substitutions) N; acceptor
substituted (A); • donor substituted (D); in panels A and
C show the sum of molecules (A) and (D). T he additivity of
µgg and β at large sizes reflects the independent effect of the
donor and acceptor. Note the similar saturation behavior of
α/n, γ/n and β .
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FIG. 5. Variation of the scaling exponents

bχ ≡ d[ln χ]/d[ln n], χ = α, γ, δ with size for the curves
shown in Fig. 4. At large sizes bα and bγ tend to 1 whereas bβ

approaches 0. T hese reflect the saturation of α/n, γ/n, and
β shown in Fig. 4.

tem. T he diagonal elements δρ
(k)
jj reflect induced charges

on various atoms whereas the off-diagonal elements δρ
(k)
ij

show the optically-induced coherences between i-th and
j-th atomic orbitals. T hey may be viewed as dynamical
bond-orders representing the joint amplitude of finding
an electron on atom i and a hole on atom j. We note that
the coherence size of the induced density matrix (given by
its anti-diagonal section) increases as we move from pan-
els B to D, indicating that higher nonlinearities induce a
coherence between atoms farther and farther apart.

T he effect of substitutions on the optical response can
best be visualized by plotting the differences ∆ρ(k) ≡

δρ
(k)
DA − δρ

(k)
N between the induced density matrices in

the substituted and the neutral molecules. Because the
neutral molecule does not possess quadratic polarizabil-
ity, only the difference ∆ρ(2 ) contributes to β. ∆ρ(1),
∆ρ(2 ), and ∆ρ(3) are displayed at the second, third,
and forth rows of Fig. 3 using the same format of the
ground state calculations (top row). T he most striking
observation from these two-dimensional plots is that the
donor/acceptor influence is screened by the π electrons
and is confined to a finite section of the bridge with about
15-17 double bonds. For short chains (left column) the
donor and acceptor communicate directly since their in-
fluence regions overlap spatially and significant electronic
coherence develops between them. At large chains (n=30,
right column) their effects are clearly separable. T his is
the reason why β levels off to a constant with bβ = 0:
only the ends of the molecule contribute to β whereas
the middle part is identical to that of neutral molecule
with vanishing second order polarizability! T his scaling
is completely different from the behavior of α and γ; T he
entire molecule contributes to these odd order responses
resulting in the fixed polarizability per unit molecular
length at large sizes (Fig. 4B and D).
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We can draw close analogy between size-scaling of the
ground state dipole and the second order polarizability
by comparing Fig. 3 with panels A and C of Fig. 4. Only
limited coherence regions of the ground state density ma-
trix and the induced density matrices at the molecular
ends are affected by the donor and the acceptor. T he
size of these coherence regions depends on the donor and
the acceptor strength. Both the ground state dipole mo-
ment and β saturate when the molecular size becomes
larger than the size of these regions. For large chains the
donor/acceptor contributions to the second order polar-
izability are additive, as illustrated in Fig. 4C: β of the
donor/acceptor molecule (DA) becomes equal to the sum
of β’s of a molecule with only donor (D) and a molecule
with only acceptor (A) substitutions. T his additivity is
similar to that displayed earlier for the permanent ground
state dipole µgg (Fig. 4A).

Unlike the present real-space analysis, the mechanism
of saturation of β at large sizes is highly nontrivial when
examined using the molecular eigenstates (Eq. (1.1)).
Since excited states are delocalized, we can argue that
µ 2

ge ∼ n at large n in the two-level model [19,24]. T his is
necessary to guarantee that the linear scaling of the linear

off-resonant polarizability with n: α ∼
fg e

E 2

g e

=
2 µ2

g e

E g e

∼ n,

where fge is the oscillator strength. µgg, µee and Ege

saturate with molecular size [9,10,13,14]. At first glance
we thus expect β ∼ n. T his is however not the case,
for the following reason: T he difference (µee − µgg) orig-
inates from charge redistribution upon electronic exci-
tation. Fig. 3 clearly shows that charge transfer which
affects the permanent dipole only occurs in confined re-
gions at the ends. Since the excited states are delocalized
over the entire molecule, the difference (µee−µgg) should
scale as n − 1, which cancels the ∼ n scaling of µ 2

ge, result-
ing in an overall constant β, independent of n. Another
way to state this is that the ground state (µgg) and the
excited state (µee) contributions to β both scale as n,
and the saturation of β originates from a delicate cancel-
lation of these two ∼ n terms. It is interesting to note
that similar cancellations have been observed in γ as well;
Individual contributions which scale as n 2 interfere and
almost cancel, resulting in the overall ∼ n scaling [32].

Defining and predicting the saturation size of optical
properties has been the main focus of extensive theo-
retical effort [6,7]. T his is a key factor in developing
synthetic strategies for novel materials. T he interfer-
ence effects discussed above make it very difficult to pre-
dict trends using the molecular eigenstates. In contrast,
our two-dimensional plots provide a highly intuitive yet
quantitative tool for addressing this longstanding prob-
lem: the density matrix shows that the influence of the
donor is limited to a few double bonds in its vicinity,
and the same is true for the acceptor. T he size of the
influence region (along the diagonal and off-diagonal ele-
ments) in a large polyene defines the intrinsic coherence
size of the system. When the molecular size is larger
than the coherence size, the effects of the donor and the

acceptor are totally decoupled and additive; both β and
µgg then become size-independent. T his is reminiscent
of the description of quantum confinement in semicon-
ductor nanoparticles [33–35]. Our analysis shows that
the donor and acceptor are decoupled even in an ideal
chain when the purely-electronic response is calculated.
Other factors such as vibrations and chain dislocations
may contribute further to the decoupling of the donor
and the acceptor, and the saturation may show up at
shorter sizes.

T he picture of electron transfer from donor to accep-
tor, accompanied by a giant dipole (and β) is therefore
highly misleading in large polyenes. While direct donor-
to acceptor charge transfer does occur at short chains,
this is no longer the case for elongated molecules, as is
evident from the lack of long-range electronic coherence
between the donor and the acceptor.
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